Ames Water Treatment Plant Infrastructure and Capacity Needs Assessment

City Council Workshop

May 19, 2009

Summary of Work to Date and Today's Presentation

- Capacity of Existing Water Plant
- 2. Condition of Existing Water Plant
- Water Quality Goals
- Development /Evaluation of Alternatives
- Water Demand Projections

Capacity Assessment

- Ames WTP nominally rated at 12 million gallons per day (mgd)
- Present probable capacity : 11 mgd
- Components generally adequate capacity
 - Source
 - Finished Water Ground Storage
 - Finished Water Elevated Storage

Existing Capacities: by Component		
Process or component	Capacity, mgd	
Aeration (without bypassing)	10	
Rapid Mix Coagulation/Flocculation	< 11	
Clarification	12	
Recarbonation	11.5	
Filtration	12	
Disinfection	12	
High-Service Pumping (firm)	13	

Capacity Assessment Many parts of the facility lack adequate reliability

Capacity Assessment

Reliability Deficiencies

- Critical piping such as:
 - Raw water supply to aerator
 - Aeration discharge to rapid mix
- Unit processes including rapid mix
- Backwash Pumping

Architectural Concerns

- Severely limited access for safety, operation & maintenance
- Code concerns throughout the facility include
 - Stairs, dead end corridors
 - Emergency egress routes
 - Lack of isolation of chemical storage
- Access to areas during possible rehabilitation construction will be problematic

Structural Concerns

- Some structures are over 80 years old
- Several Structures are near the end of their useful life including
 - Mix Tank No. 1
 - Aeration Tank
 - Recarbonation Tank No. 1
 - ¾ MG Reservoir
- Each of these structures is directly adjacent to Main Building, jeopardizing continued operation of the facility

Mechanical Condition

- Most mechanical equipment (heating and ventilation) is in satisfactory condition
- There are two items that require attention
 New boilers needed
 - New unit heater needed in East Pipe Gallery

Process Condition

- Much of the process equipment is in satisfactory condition due to the operation and maintenance staff's dedication
- Items that have less than 5 years of estimated life include
 - Two rapid mix mixers
 - One lime slaker
 - Aeration influent piping
 - Clarifier mechanism
 - Hypochlorite (disinfection) tanks and pumps 29

Process Condition

- Many items are old enough that repair parts are difficult to obtain
- Piping galleries are congested making maintenance difficult
- Due to piping arrangements filters cannot be fully automated or monitored

Electrical Condition

- SCADA is new and in good condition
- Power distribution
 - Much conduit and wiring needs to be replaced
 - Relocate all electrical equipment/devices to spaces with more favorable environmental conditions
 - Replace/add various panel boards
 - Relocate and perhaps replace emergency generator

Condition of Existing Facility – Primary Driver for Project

- Reliability Deficiencies
 - Single Points of Failure without bypass:
 - Examples: Raw Water Piping, Aeration, Rapid Mix Basin and Backwash Supply
 - Firm capacity inadequacies
 (example: clarifiers)

Structural Concerns:

Aeration, Mix tank No. 1, Recarbonation Tank No. 1, ¾ MG Reservoir

Condition of Existing Facility – Primary Driver for Project (cont)

- Architectural Concerns:
 - Dead end Corridors, Stairs, Chemical Storage
- Safety
- Electrical Concerns:
 - Electrical Equipment location and deterioration
 - Safety

Water Quality Considerations

Water Quality

- Regulatory Compliance Comply with Safe Drinking Water Act and Revisions
- Maintain Distribution System Through Treatment
- Maintain Exceptional Taste

Water Quality and Treatment Goals

- Consideration of Existing and Anticipated Regulations
- Compliance with the Safe Drinking Water Act
- Softened water, finished water hardness 150 170 mg/L
- Iron (Fe) and manganese (Mn) removal
- Pathogen destruction
- Hydrogen sulfide (H₂S) removal (no taste or odor)
- Total organic carbon (TOC) reduction
- pH target 9.5 +/- Slightly depositing
- Exceptional taste (same as current)
- Note: Goals listed are currently being met with existing facility.

Significant Water Quality Monitoring -

- What is in our water?
- Results of special recent testing---

2009 testing for 24 likely compounds in lowa waters

- 22 of the 24 compounds -- non-detectable
- 2 compounds detected at parts-per-trillion level
 - Sulfamethazine (an animal antibiotic)
 - Cholesterol (a plant or animal steroid)
 - Far below any level of concern

Development and Evaluation of Alternatives

Projecting Design Capacity

- Changes in population
- Changes in customer base
 - Residential, Commercial, Industrial
- Changes in water use characteristics
 - Consumptive
 - Conserving
- City / utility policies

Alternatives Considered

- 1. Rehab Existing Facilities
- 2. New Lime Softening Plant at New Location
- a. New Membrane Plant at New Location
- 4. Satellite / Phased New Plant

Conceptual Plan

- Low level of detail relative to the final design documents
- Basis of Analysis -- Assumptions Required
 - General process scheme
 - General type of equipment
 - General layout / configuration
 - Type and quality of construction
 - Materials of construction

Concept Development Considerations

- Treatment Goals
- Available Technology
- Operational Requirements
- Reliability
- Flexibility to handle
- changing conditions
- Implementation
- Expandability
- Social ImpactsEnvironmental
- Impacts / Sustainability

Cost Estimates

- Capital Costs
 - Construction, land, engineering, admin.
- O&M
 - Labor, Chemicals, Electricity, Sludge Disposal
- Life-Cycle Costs
 - total present worth or total annual equivalent
 - Capital, O&M, Replacement, Salvage Value

Rehabilitate Existing Plant Non-monetary Factors

- Pros
 - Process is similar to
 - existing

 Multiple treatment units
- -
 - Multiple treatment units provided

ConsDifficult phased

- construction while maintaining operation
- Aesthetic and construction issues for neighbors
- Limited site and space constraints, limited expandability
- Difficult chemical deliveryInefficient Operator
- movement

Opinion of Probable Costs

Alternative	Capital Cost (Million \$)	O&M Cost (\$/1000 gal.)
Alt. 1 – Rehab Existing Plant	\$54.786	\$1.18
Alt. 2 – New Lime Softening Plant		
Alt. 3 – New Membrane Plant		
Alt. 4a – 10 MGD Lime w/ 5MGD Later		
Alt. 4b – 15MGD Lime & Phase Demo and Admin		
Current Annual Operation and Maintenance (O&M) cost	N/A	\$1.18
		62

Alternative 2 New Lime Softening Plant

Opinion of Probable Costs

Alternative	Capital Cost (Million \$)	O&M Cost (\$/1000 gal.)
Alt. 1 – Rehab Existing Plant	\$54.786	\$1.18
Alt. 2 – New Lime Softening Plant	\$48.431	\$1.17
Alt. 3 – New Membrane Plant		
Alt. 4a - 10 MGD Lime w/ 5MGD Later		
Alt. 4b – 15MGD Lime & Phase Demo and Admin		
Current Annual Operation and Maintenance (O&M) cost	N/A	\$1.18
		65

Alternative 3 New Membrane Softening Plant

Opinion of Probable Costs

Alternative	Capital Cost (Million \$)	O&M Cost (\$/1000 gal.)
Alt. 1 – Rehab Existing Plant	\$54.786	\$1.18
Alt. 2 – New Lime Softening Plant	\$48.431	\$1.17
Alt. 3 – New Membrane Plant	\$72.032	\$1.35
Alt. 4a – 10 MGD Lime w/ 5MGD Later		
Alt. 4b – 15MGD Lime & Phase Demo and Admin		
Current Annual Operation and Maintenance (O&M) cost	N/A	\$1.18

Alternative 4 **Phased Construction Lime Softening Plant**

Phased Construction

Alternative 4a:

- Phase 1 New 10 MGD Lime Softening Plant at a new location with existing lime sludge lagoon upgrades
- Phase 2 Additional 5 MGD Lime Softening train built, old plant demolition and administration upgrades

Cons

- Pros

 - Process similar to existingCompact Layout
 - Expansion possible
 - Existing Site Available
- Total desired capacity not available in first phase
- Only two treatment trains in first phase
- New site required

Opinion of Probable Costs

Alternative	Capital Cost (Million \$)	O&M Cost (\$/1000 gal.)	
Alt. 1 – Rehab Existing Plant	\$54.786	\$1.18	
Alt. 2 – New Lime Softening Plant	\$48.431	\$1.17	
Alt. 3 – New Membrane Plant	\$72.032	\$1.35	
Alt. 4a – 10 MGD Lime w/ 5MGD Later	\$36.502 + \$16.572 = \$53.074	\$1.17	
Alt. 4b – 15MGD Lime & Phase Demo and Admin			
Current Annual Operation and Maintenance (O&M) cost	N/A	\$1.18	
		72	

Phased Construction

Alternative 4b:

- Phase 1 New 15 MGD Lime Softening Plant at new location with existing lime lagoon upgrades
- Phase 2 Old Plant Demolition and administration upgrades

Pros

- Cons New site required
- Process similar to existing
 Compact layout
 Expansion possible
- Meet desired capacity in first phase
- Multiple treatment units provided
- Existing Site Available

Opinion of Probable Costs

Alternative	Capital Cost (Million \$)	O&M Cost (\$/1000 gal.)
Alt. 1 – Rehab Existing Plant	\$54.786	\$1.18
Alt. 2 – New Lime Softening Plant	\$48.431	\$1.17
Alt. 3 – New Membrane Plant	\$72.032	\$1.35
Alt. 4a – 10 MGD Lime w/ 5MGD Later	\$36.502 + \$16.572 = \$53.074	\$1.17
Alt. 4b – 15MGD Lime & Phase Demo and Admin	\$43.588 + \$5.907 = \$49.495	\$1.17
Current Annual Operation and Maintenance (O&M) cost	N/A	\$1.18
		74

Notes on Opinion of **Costs Presented - Capital**

- Based on February 2009
- Amounts shown do not include escalation
- Escalation based on several factors
 - Bidding Climate
 - Overall Economy
 - Bid Date and Construction Duration
- Historical ~3% per year

Notes on Opinion of **Costs Presented - O&M**

- Do not include administrative costs
- Alternative costs based on average production rate of 7.5 MGD (today's \$, 2033 average demand)
- Current plant costs are actual at average rate of approximately 6.5 MGD
- Current plant equipment and capital replacements are low due to expectation of upcoming replacement project

Going deeper on the issue of Water Use Projections

Projecting Design Capacity

- Changes in population
- Changes in customer base
 - Residential, Commercial, Industrial
- Changes in water use characteristics
 - Consumptive Conserving
- City / utility policies

Scope and Constraints

- Used population information from city's planning documents as a starting point
- Extended projections to the design year 2033
 - 20 years from anticipated completion of project in 2013
- Allowed for capacity to accommodate time required to implement further expansion at end of original design life.

Allowance for Industrial Demand

- Demand projections using population projections account for general commercial activity related to population growth (restaurants, shopping centers, light industry, etc)
- Other Industrial Use not accounted for by general population growth
 - Level 1 no additional industrial allowance
- Level 2 -- 5 industries at 100,000 gpd
 - 0.5 mgd
 - Level 3 -- 1-2 very large water users
 1 2 mgd

Current Conservation Measures

Interior Water Reduction (Average Demand)

- Community Education: displays at events, brochures,
- Public awareness campaign
- Metered Customers

Exterior Water Reduction (Peak Demand)

- Seasonal Rates, Irrigation Rates
- Inverted Block Rate Structure
- Metered Customers

Aggressive Conservation Measures

Interior Water Reduction (Average Demand)

- Clothes Washer Rebates
- Faucet and Showerhead
- Rebates
- Toilet and Urinal Rebates
- Additional Education
- Indoor Audit
- Distribution System Maintenance and Upkeep

Exterior Water Reduction (Peak Demand)

- Outdoor Audits
- Irrigation Kits; Manual, ET and Rain Sensors

Very Aggressive Conservation Measures

Interior Water Reduction (Average Demand)

- Ultra High Efficiency Toilet Rebates
- Waterless Urinal Rebates
- Process Water Audits for Industry
- Water Budget Rates
- Require Retrofit of Homes upon Sale

Exterior Water Reduction (Peak Demand)

- Require Native/Low Water Use Plants
- Limit Irrigation
 Landscaping
- Promote Dormant Lawns
- Lawn Buy Back Programs

85

Prohibit Lawns

Design Capacity Selection

- Four example scenarios for consideration based on:
 - Base demand (Population x per capita use)
 - Conservation effort
 - Industrial allowance

Cost – Capacity Sensitivity

		88
Capital Cost difference		- 4.1 % (- \$ 2.0 million)
Capacity difference		- 20 % (- 3 mgd)
Estimated Capital Cost	\$48.4 million	\$ 46.4 million
Design Capacity	15 mgd	12 mgd

Recommendation

Alternative 4b --Phased construction of a new lime softening plant on a new site.

- Meets water quality needs for Ames Residents
- Ranks high in regard to:
 - Operational requirements
 - Reliability
 - Flexibility
 - Ability to implement
 - Expandability
 - Social / Environmental impacts
- Most cost-effective and Lower rate impact

Potential Rate Impact Comparison Alternate 2 vs. Alternate 4B

Next Steps

- Final Draft of Report
- Develop recommendation for Council
- July 14 Recommendation to City Council